
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

Exploiting Second-Order Cone Structure for Global Optimization

Ashutosh Mahajan and Todd Munson

Mathematics and Computer Science Division

Preprint ANL/MCS-P1801-1010

October 28, 2010

Contents

1 Introduction 1

2 Nonlinear Constraints 2
2.1 Construction . 3
2.2 Necessary Conditions . 5
2.3 Comments . 8

3 Factorable Constraints 8
3.1 Positive Constant . 9
3.2 Zero Constant . 11

4 Computational Experiments 13

5 Conclusions 14

Acknowledgments 15

References 15

Exploiting Second-Order Cone Structure for Global Optimization

Ashutosh Mahajan∗ Todd Munson†

October 28, 2010

Abstract

Identifying and exploiting classes of nonconvex constraints whose feasible region is convex after branching
can reduce the time to compute global solutions for nonlinear optimization problems. We develop techniques for
identifying quadratic and nonlinear constraints whose feasible region can be represented as the union of a finite
number of second-order cones, and we provide necessary and sufficient conditions for some reformulations. We
then construct a library of small instances where these reformulations are applicable. Comparing our method to
general-purpose solvers, we observe several orders of magnitude improvement in performance.

1 Introduction

Consider a constrained optimization problem of the form,

min
x∈Rn

f(x)

s.t. pi(x) ≤ 0, i = 1, . . . ,m, (P)

where n,m ∈ N, f : Rn → R, and pi : Rn → R, i = 1, . . . ,m are given. When the feasible region is a convex set
and f is a convex function, the problem is relatively easy to solve because any local solution is a global solution.
Convexity of the feasible region is guaranteed if pi is a convex function for each i = 1, . . . ,m. Conditions sufficient
for ensuring convexity have been described by Boyd and Vandenberghe [2004], amongst others.

If the feasible region is not convex, a local solution may not be a global solution and we must search the feasible
region for a global solution. Branch-and-bound methods are typically used for such a search. Global optimization
solvers usually approximate nonconvex constraints by convex relaxations. A secant approximation [Tawarmalani
and Sahinidis, 2004] is used to linearize concave functions, for example, while McCormick inequalities are used
[Al-Khayyal et al., 1995] for bilinear functions. Convex quadratic relaxations can also be constructed by using the
approach of Androulakis et al. [1995]. The tightness of the relaxation depends on the bounds on the variables;
this fact is used to generate stronger relaxations as the feasible region is explored. In particular, after solving a
convex relaxation, we can branch on a variable x0 ≤ k ∨ x0 ≥ k for some k ∈ R and use the tightened bounds
to strengthen the linear relaxations. Instead of branching, we can generate valid inequalities [Saxena et al., 2008;
Belotti, 2010] by solving the so-called cut-generating linear program.

In this paper, we identify classes of nonconvex constraints whose feasible region is convex after branching. The
main idea underlying our branching scheme is to identify subdomains where the feasible region can be represented
as the union of a finite number of second-order cones. A second-order cone is a convex set defined as

S = {(x, y) ∈ Rn × R1 | y ≤ ‖x‖2},

where ‖.‖2 denotes the two norm. Alizadeh and Goldfarb [2003] describe the theory and applications of second-
order cone programming. They also describe methods to reformulate some special convex problems, such as the
harmonic mean of positive affine functions, using second-order cones. In contrast, we partition a given nonconvex
region so that each subdomain is a second-order cone. The simplest such region is the set

T = {x0 ∈ R | k − x2
0 ≤ 0},

where k > 0 is a given parameter. Even though k − x2
0 is not a convex function and T is not a convex set, if we

branch on the disjunction x0 ≤ 0 ∨ x0 ≥ 0, then we obtain two convex sets:

T0 = {x0 ∈ R | x0 ≤ −
√
k}, T1 = {x0 ∈ R | x0 ≥

√
k}.

∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; e-mail: mahajan@mcs.anl.gov
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; e-mail: tmunson@mcs.anl.gov

1

A generalization in higher dimensions is the set

S = {x ∈ Rn | ‖Ãx+ b̃‖22 ≤ (c̃Tx+ d̃)2},

where Ã ∈ Rn × Rn, b̃ ∈ Rn, c̃ ∈ Rn, and d̃ ∈ R are given. In particular, S is the union of two second-order cones

S0 = {x ∈ Rn | ‖Ãx+ b̃‖2 ≤ (c̃Tx+ d̃)}, S1 = {x ∈ Rn | ‖Ãx+ b̃‖2 ≤ −(c̃Tx+ d̃)}.

We determine, in Section 2, the conditions for expressing a given constraint in the form of the set S for a general
class of nonlinear constraints containing a quadratic term and, in Section 3, for factorable constraints, where more
than two second-order cones may be needed.

Once this structure is identified, we need not create any relaxations for the constraint since branching results
in convex second-order cone constraints. When we have branched on all such constraints, the feasible region is
convex, and we need not branch further. Such a branching scheme can significantly reduce the size of the branch-
and-bound tree required to compute a global solution when compared to the tree generated by existing solvers
using linear relaxations. Moreover, our approach is applicable when the bounds on the variables are not finite.
This approach, however, can be used only on a restricted set of functions. The computational results in Section 4
demonstrate that this method can outperform existing methods by orders of magnitude on small instances that
are difficult to solve with spatial branching.

2 Nonlinear Constraints

We consider nonlinear constraints of the form

xTAx+ cTx+ d+

k∑
i=1

gi(x) ≤ 0, (1)

where A ∈ Rn×n is a symmetric matrix, c ∈ Rn, d ∈ R, and gi(x) : Rn → R is a convex function for each
i = 1, . . . , k. If A is positive semidefinite, all eigenvalues of A are nonnegative. Then the feasible region is a
convex set, and we need not reformulate the constraint.

Therefore, we assume A is not positive semidefinite and we want to reformulate constraint (1) using second-
order cones. We first assume gi(x) is a nonnegative, convex function and

√
gi(x) is a convex function. Adding

variables and constraints produces the equivalent augmented system,

xTAx+ cTx+ d+
∑k
i=1 z

2
i ≤ 0,√

gi(x) ≤ zi, i = 1, . . . , k,
(2)

where z ∈ Rk are auxiliary variables. In particular, the assumptions made on gi(x) guarantee the new constraints
are convex. Moreover, the introduction of auxiliary variables does not increase the number of negative eigenvalues
in the quadratic constraint.

Theorem 2.1. Assume gi(x) is a nonnegative function for each i = 1, . . . , k. If x∗ ∈ Rn is feasible for con-
straint (1) then there exists z∗ ∈ Rk such that (x∗, z∗) is feasible for constraints (2). Conversely, if (x∗, z∗) is
feasible for constraints (2), then x∗ is feasible for constraint (1).

Proof. Given x∗ ∈ Rn such that x∗TAx∗ + cTx∗ + d +
∑k
i=1 gi(x

∗) ≤ 0. By assumption, gi(x
∗) ≥ 0. Let

z∗i =
√
gi(x∗), i = 1, . . . , k. Then (x∗, z∗) is feasible for constraints (2).

Conversely, if (x∗, z∗) ∈ Rn+k is feasible for constraints (2), then gi(x
∗) ≤ z∗2i , i = 1, . . . , k. Summing the

following k + 1 inequalities

x∗TAx∗ + cTx∗ + d+

k∑
i=1

z∗2i ≤ 0

gi(x
∗)− z∗2i ≤ 0 i = 1, . . . , k,

shows that x∗ is feasible for constraint (1).

We now consider two examples where the functions gi(x) in constraint (1) are not zero.

2

Example 1: We can reformulate the constraint

xTAx+ cTx+

k∑
i=1

α
rTi x
i + d ≤ 0,

when αi > 0, i = 1, . . . , k, as

xTAx+ cTx+

k∑
i=1

x2
n+i + d ≤ 0

α
1
2
rTi x

i − xn+i ≤ 0, i = 1, . . . , k,

since α
1
2
rTi x

i is convex. �

Example 2: Consider the constraint

xTAx+ cTx+

k∑
i=1

∣∣∣rTi x∣∣∣pi + d ≤ 0,

where k ∈ N and pi ≥ 2. We can reformulate this constraint as

xTAx+ cTx+

k∑
i=1

x2
n+i + d ≤ 0,

∣∣∣rTi x∣∣∣ pi2 ≤ xn+i, i = 1, . . . , k,

since |rTi x|
pi
2 is convex. �

The only nonconvex constraint in our reformulation is the quadratic constraint. Therefore, consider a quadratic
constraint in the general form

xTAx+ cTx+ d ≤ 0, (3)

where A ∈ Rn×n is a symmetric matrix that is not positive semidefinite. When possible, we want to recover a
second-order cone constraint

‖Ãx+ b̃‖2 ≤ c̃Tx+ d̃.

By squaring both sides of this inequality, we obtain a quadratic constraint with the Hessian matrix

ÃT Ã− c̃c̃T ,

that is, a positive semidefinite matrix with a rank-one update. This matrix can have at most one negative
eigenvalue [e.g., Thompson, 1976]. Therefore, if A has more than one negative eigenvalue, then the constraint
cannot be transformed into a second-order cone constraint. A having exactly one negative eigenvalue, however,
does not imply that the constraint can be transformed into a second-order cone constraint; additional conditions
are required. We now detail the construction used to identify constraints that can be represented as second-order
cone constraints. We then prove that the conditions are necessary.

2.1 Construction

We first perform an eigenvalue decomposition of A into QDQT , where Q is an orthogonal matrix and D is a
diagonal matrix containing the eigenvalues. Since A is symmetric, all its eigenvalues are real [Wilkinson, 1965,
p. 25]. We then introduce a diagonal scaling matrix R and a diagonal matrix E with entries from {0,−1, 1} such
that D = RER:

Rii =

{ √
|Dii| if Dii 6= 0

1 if Dii = 0
, Eii =

−1 if Dii < 0

0 if Dii = 0
1 if Dii > 0.

The original constraint (3) is now equivalent to the pair of constraints

yTEy + bT y + d ≤ 0,

y = RQTx,

where b = R−1QT c.
We then split the indices of y into four disjoint sets:

3

1. Let I+ denote the indices where E has a positive entry, I+ = {i | Eii > 0}.
2. Let I− denote the indices where E has a negative entry, I− = {i | Eii < 0}.
3. Let I0 denote the indices where E has a zero entry and the corresponding entry in the linear term b is

nonzero, I0 = {i | Eii = 0, bi 6= 0}.
4. Let I0̄ denote the indices where E has a zero entry and the corresponding entry in the linear term b is zero,

I0̄ = {i | Eii = 0, bi = 0}.
For the purposes of the construction we ignore the set I0̄, since they have no impact on the constraint.

Constraint (3) is therefore equivalent to the pair of constraints∑
i∈I+

(
y2
i + biyi

)
−
∑
i∈I−

(
y2
i − biyi

)
+
∑
i∈I0

(biyi) + d ≤ 0,

y = RQTx.

We now complete the squares to produce the equivalent constraints

∑
i∈I+

(
yi +

bi
2

)2

−
∑
i∈I−

(
yi −

bi
2

)2

+
∑
i∈I0

(biyi) + d+

∑
i∈I− b

2
i −

∑
i∈I+ b

2
i

4
≤ 0,

y = RQTx. (4)

We immediately note that if |I−| = 0, then constraint (3) has a convex feasible region. Otherwise, if |I−| > 1,
then constraint (3) cannot be written as a second-order cone constraint since the original matrix has more than
one negative eigenvalue. Therefore, we need consider only the case where |I−| = 1. Assuming without loss of
generality that I− = {1}, we now rearrange the terms to produce the equivalent constraints:

∑
i∈I+

(
yi +

bi
2

)2

+
∑
i∈I0

(biyi) + d+

∑
i∈I− b

2
1 −

∑
i∈I+ b

2
i

4
≤
(
y1 −

b1
2

)2

,

y = RQTx.

(5)

If |I0| = 0 and the constant h = d+

∑
i∈I−

b2i−
∑
i∈I+

b2i

4
is nonnegative, then the constraint can be written as∥∥∥∥ E+

(
y + b

2

)
√
h

∥∥∥∥
2

≤
∣∣∣∣y1 −

b1
2

∣∣∣∣ , (6)

where E+ is a diagonal n × n matrix, with E+
ii = Eii if i ∈ I+ and E+

ii = 0 otherwise. The region feasible to
the above constraint is a union of two second-order cones. We can obtain a second-order cone formulation by
branching on the disjunction y1 ≤ b1

2
∨ y1 ≥ b1

2
. The following two systems of inequalities are used in place of

constraint (3) in each of the branches, respectively:∥∥∥∥ E+

(
y + b

2

)
√
h

∥∥∥∥
2

≤ b1
2
− y1,

y = RQTx;

∥∥∥∥ E+

(
y + b

2

)
√
h

∥∥∥∥
2

≤ y1 −
b1
2
,

y = RQTx.

We can also rewrite (6) as a system of inequalities with convex functions and an additional binary variable,∥∥∥∥ E+

(
y + b

2

)
√
h

∥∥∥∥
2

≤ b1
2
− y1 +Myb∥∥∥∥ E+

(
y + b

2

)
√
h

∥∥∥∥
2

≤ y1 −
b1
2

+M(1− yb),

yb ∈ {0, 1}, (7)

where M is suitably large, and then optimize over such a system by using a solver for convex mixed-integer
nonlinear optimization problems.

4

2.2 Necessary Conditions

We identify three conditions for reformulation:

(C1) |I−| = 1,

(C2) |I0| = 0, and

(C3) h = d+

∑
i∈I−

b2i−
∑
i∈I+

b2i

4
is nonnegative,

Our construction shows that if these conditions are satisfied, then the feasible region of constraint (3) is a union
of two second-order cones. We now show these three conditions are necessary. If the constraint is not redundant
and at least one of these conditions is violated, then the feasible region of constraint (3) is not a union of a finite
number of second-order cones.

The outline of our proofs follows a general scheme. For each case, we find three feasible points for constraint (3),
x1, x2, and x3, such that the pairwise midpoints, x12 = 1

2
(x1 + x2), x23 = 1

2
(x2 + x3), and x31 = 1

2
(x3 + x1), are

infeasible. Therefore, x1 and x2 do not belong to a convex set. We find similar results for the pairs x2, x3 and
x3, x1. We then conclude that the feasible region of constraint (3) is not a union of two convex sets.

To complete the proofs, we eliminate the additional y variables from constraint (4) to obtain the equivalent
quadratic constraint in the space of original variables,

∑
i∈I+

(
RiiQ

T
i x+

bi
2

)2

−
∑
i∈I−

(
RiiQ

T
i x−

bi
2

)2

+
∑

i∈I0∪I0̄

(
biRiiQ

T
i x
)

+ h ≤ 0, (8)

where Qi is the ith column of the orthogonal matrix Q, b = R−1QT c and h = d +

∑
i∈I−

b2i−
∑
i∈I+

b2i

4
. In the

following proofs we define

f(x) =
∑
i∈I+

(
RiiQ

T
i x+

bi
2

)2

−
∑
i∈I−

(
RiiQ

T
i x−

bi
2

)2

+
∑

i∈I0∪I0̄

(
biRiiQ

T
i x
)

+ h

and denote the set of feasible solutions as F = {x | f(x) ≤ 0}. We first preclude the trivial case when constraint (3)
or, equivalently, constraint (8) is redundant.

Lemma 2.1. Given a quadratic constraint in the form of constraint (8). If |I+| = |I0| = 0 and h ≤ 0, then
constraint (8) is redundant.

Proof. The constraint can be written as

h ≤ 0 ≤
∑
i∈I−

(
RiiQ

T
i x−

bi
2

)2

,

which is true for all x ∈ Rn.

Theorem 2.2. Given a quadratic constraint in the form of constraint (8). If |I−| > 0 and |I0| > 0, then F is
not a union of two convex sets.

Proof. Let ī− ∈ I− and ī0 ∈ I0. Consider the system

RQTx = ȳ.

Let x1 be the unique solution of the system when

ȳi =

1 + bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,

−bi
2
, i ∈ I+,

1−h
bi
, i = ī0,

0, otherwise.

Let x2 be the unique solution of the system when

ȳi =

−1 + bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,

−bi
2
, i ∈ I+,

1−h
bi
, i = ī0,

0, otherwise.

5

Let x3 be the unique solution of the system when

ȳi =

bi
2
, i ∈ I−,

−bi
2
, i ∈ I+,

−h
bi
, i = ī0,

0, otherwise.

All three points x1, x2, x3 are feasible since f(x1) = f(x2) = f(x3) = 0. Consider the midpoint x12 = 1
2
(x1 + x2).

Then,

RQTx12 =

bi
2
, i ∈ I−,

−bi
2
, i ∈ I+,

1−h
bi
, i = ī0,

0, otherwise,

and f(x12) = 1. Similarly, we can show f(x23) = f(x31) = 1
4
. Thus x12, x23, x31 are not feasible and F is not a

union of two convex sets.

Theorem 2.3. Given a quadratic constraint in the form of constraint (8). If the constraint is not redundant and
|I−| > 0, |I0| = 0, and h < 0, then F is not a union of two convex sets.

Proof. Since the constraint is not redundant, it follows from Lemma 2.1 that |I+| > 0. Let ī− ∈ I− and ī+ ∈ I+.
Consider the system

RQTx = ȳ.

Let x1 be the unique solution of the system when

ȳi =

bi
2
, i ∈ I−,√

−h− bi
2
, i = ī+,

−bi
2
, i ∈ I+ \ ī+,

0, otherwise.

Let x2 be the unique solution of the system when

ȳi =

1 + bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,√

1− h− bi
2
, i = ī+,

−bi
2
, i ∈ I+ \ ī+,

0, otherwise.

Let x3 be the unique solution of the system when

īi =

−1 + bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,√

1− h− bi
2
, i = ī+,

−bi
2
, i ∈ I+ \ ī+,

0, otherwise.

All three points x1, x2, x3 are feasible since f(x1) = f(x2) = f(x3) = 0. Their midpoints x12, x23, x31, however,

are infeasible because f(x12) = f(x31) = h+
√
−h
√

1−h
2

> 0 and f(x23) = 1. Therefore, F is not a union of two
convex sets.

Theorem 2.4. Given a quadratic constraint in the form of constraint (8). If the constraint is not redundant and
|I−| > 1, |I0| = 0 and h ≥ 0, then F is not a union of two convex sets.

Proof. Let ī− ∈ I− and ĩ− ∈ I− with ī− 6= ĩi. Consider the system

RQTx = ȳ.

Since the constraint is not redundant, it follows from Lemma 2.1 that either h > 0 or I+ is not empty. We prove
the theorem for these two cases separately.

(i) Suppose h > 0. Let x1 be the unique solution of the system when

ȳi =

√
h+ bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,

−bi
2
, i ∈ I+,

0, otherwise.

6

Let x2 be the unique solution of the system when

ȳi =

−
√
h+ bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,

−bi
2
, i ∈ I+,

0, otherwise.

Let x3 be the unique solution of the system when

ȳi =

√
h+ bi

2
, i = ĩ−,

bi
2
, i ∈ I− \ ĩ−,

−bi
2
, i ∈ I+,

0, otherwise.

All three points x1, x2, x3 are feasible since f(x1) = f(x2) = f(x3) = 0. Their midpoints x12, x23, x31, however,
are infeasible because f(x12) = h > 0 and f(x23) = f(x31) = h

2
> 0. Therefore, F is not a union of two convex

sets.
(ii) Suppose h = 0 and |I+| > 0. Let ī+ ∈ I+. Let x1 be the unique solution of the system when

ȳi =

1 + bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,

1− bi
2
, i = ī+,

−bi
2
, i ∈ I+ \ ī+,

0, otherwise.

Let x2 be the unique solution of the system when

ȳi =

−1 + bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,

1− bi
2
, i = ī+,

−bi
2
, i ∈ I+ \ ī+,

0, otherwise.

Let x3 be the unique solution of the system when

ȳi =

1 + bi

2
, i = ĩ−,

bi
2
, i ∈ I− \ ĩ−,

1− bi
2
, i = ī+,

−bi
2
, i ∈ I+ \ ī+,

0, otherwise.

All three points x1, x2, x3 are feasible since f(x1) = f(x2) = f(x3) = 0. Their midpoints x12, x23, x31, however,
are infeasible because f(x12) = 1 and f(x23) = f(x31) = 1

2
. Therefore, F is not a union of two convex sets.

Corollary 2.1. Given a quadratic constraint in the form of constraint (8). If the constraint is not redundant,
|I−| > 0, and at least one of the conditions (C1)–(C3) is not satisfied, then F is not a union of two convex sets.

Proof. If condition (C2) is not satisfied then Theorem 2.2 shows F is not a union of two convex sets. If condi-
tion (C2) is satisfied and condition (C3) is not satisfied, then Theorem 2.3, shows F is not a union of two convex
sets. If both conditions (C2) and (C3) are satisfied and condition (C1) is not satisfied, then Theorem 2.4 shows
F is not a union of two convex sets.

Corollary 2.2. Given a quadratic constraint in the form of constraint (8). If the constraint is not redundant,
|I−| > 0, and at least one of the conditions (C1)–(C3) is not satisfied, then F is not a union of a finite number
of convex sets.

Proof. We show that if constraint (8) is not redundant and does not satisfy one or more conditions (C1)–(C3),
then for any given k > 0, k ∈ N, F is not a union of 2k convex sets. The proof is similar to those for Theorems 2.2–
2.4. Instead of finding three feasible points x1, x2, x3, we can find 2k + 1 feasible points x1, . . . , x2k+1 such that
for each pair xi, xj , the midpoint 1

2
(xi + xj) is not feasible. Thus, xi, xj cannot be in the same convex set, and

F must be a union of more than 2k convex sets.
We illustrate the proof of this theorem only for when |I−| > 0 and |I0| > 0 (analogous to Theorem 2.2). The

other cases can be proved in a similar manner. Let ī− ∈ I− and ī0 ∈ I0. Consider the system

RQTx = ȳ.

7

Let x2θ, θ = 0, . . . , k be the unique solution to the system with

ȳi =

√
θ + bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,

−bi
2
, i ∈ I+,

θ−h
bi
, i = ī0

0, otherwise.

Let x2θ−1, θ = 1, . . . , k be the unique solution to the system with

ȳi =

−
√
θ + bi

2
, i = ī−,

bi
2
, i ∈ I− \ ī−,

−bi
2
, i ∈ I+,

θ−h
bi
, i = ī0,

0, otherwise.

All these points are feasible since f(xi) = 0, i = 0, . . . , 2k. However, f(1
2
(xi + xj)) > 0, i, j = 0, . . . , 2k with i 6= j.

Therefore, F is not the union of 2k convex sets.

2.3 Comments

If extra information is available from other constraints in the optimization problem, then constraints for which
conditions (C1)–(C3) are not satisfied may still be reformulated by using second-order cones. Consider, for
example, the problem

minx1 + x2 + x4,

s.t. x2
1 − x2

2 + x3 + 10 ≤ 0,

6x2
1 − x3 + 4x2

4 + 4 ≤ 0,

x1 + x2 + x4 ≥ 2,

x3 ≥ 0.

Even though the first constraint does not satisfy condition (C2), we can reformulate the problem as

minx1 + x2 + x4,

s.t. x2
1 − x2

2 + t23 + 10 ≤ 0,

6x2
1 − t23 + 4x2

4 + 4 ≤ 0,

x1 + x2 + x4 ≥ 2,

which is obtained by substituting x3 = t23. The reformulated problem satisfies all conditions.
Similarly, in the presence of linear equality constraints, even if condition (C1) is not satisfied, we may perform

a substitution. For example, consider the system

7x2
1 − x2

2 − x2
3 + 10 ≤ 0,

x2 + x3 = 2,

where the first constraint does not satisfy condition (C1). Substituting x3 = 2− x2, we obtain the system

7x2
1 − 2(x2 − 1)2 + 8 ≤ 0,

x2 + x3 = 2,

which satisfies all our conditions.
Automating some of these reformulations is possible, but guaranteeing that all possible second-order cone

constraints are identified would be computationally challenging. The difficulty arises in choosing the correct
subset of substitutions to make from a large number of possible substitutions so that the result is either a convex
constraint or a constraint representable as the union of two second-order cones.

3 Factorable Constraints

In this section, we consider problems that can be reformulated with constraints of the form

−
k∏
i=1

yi + t ≤ 0,

where t ≥ 0 is a given constant and yi, i = 1, . . . , k, are original or auxiliary variables of the problem. Conditions
sufficient for reformulating this constraint depend on whether t is positive or zero. These two cases differ in the
assumptions on functions associated with the auxiliary variables.

8

3.1 Positive Constant

Consider a constraint of the form

−

(
p∏
i=1

aTi x+ bi

)(
q∏
j=1

gj(x)

)(
2r∏
k=1

hk(x)

)
+ t ≤ 0, (9)

where ai ∈ Rn and bi ∈ R for i = 1, . . . , p with the following assumptions:

(A1) t ∈ R is a given constant with t > 0,

(A2) gj : Rn → R is a nonnegative concave function for j = 1, . . . , q, and

(A3) hk : Rn → R is a nonpositive convex function for k = 1, . . . , 2r.

A simple case is a polynomial, with all real roots, constrained to be greater than a positive constant. An example
of a nonnegative concave function is the constant elasticity of production production function introduced by Arrow
et al. [1961] to study capital-labor substitution,

(θxσ0 + (1− θ)xσ1)
1
σ ,

where 0 ≤ θ ≤ 1 and σ < 1 are are constants.
To represent constraint (9) using second-order cones, we begin by forming the augmented system

−
p+q+2r∏
i=1

yi + t ≤ 0,

yi = aTi x+ bi, i = 1, . . . , p,

0 ≤ yp+j ≤ gj(x), j = 1, . . . , q, (10)

0 ≤ −yp+q+k ≤ −hk(x), k = 1, . . . , 2r.

Theorem 3.1. Let assumptions (A1)–(A3) be satisfied. Then x∗ ∈ Rn satisfies constraint (9) if and only if there
exists y∗ ∈ Rp+q+2r such that (x∗, y∗) satisfies the augmented system (10).

Proof. Assume x∗ satisfies constraint (9). Let y∗i = aTi x
∗ + bi, i = 1, . . . , p, y∗p+j = gj(x

∗), j = 1, . . . , q, and
y∗p+q+k = hk(x∗), k = 1, . . . , 2r. Then (x∗, y∗) is feasible for the augmented system (10).

For the converse, let (x∗, y∗) be feasible for the augmented system (10). Assume
∏p
i=1 y

∗
i ≤ 0 or y∗p+j = 0 for

some j = 1, . . . , q or y∗p+q+k = 0 for some k = 1, . . . , 2r. In this case,
∏p+q+2r
i=1 is nonpositive, contradicting our

assumption of feasibility for the constraints (10).
Therefore,

∏p
i=1 y

∗
i > 0, y∗p+j > 0, j = 1, . . . , q, and y∗p+q+k > 0, k = 1, . . . , 2r. Then,

t ≤
p+q+2r∏
i=1

y∗i

=

(
p∏
i=1

y∗i

)
×

(
q∏
j=1

y∗p+j

)
×

(
r∏
k=1

(−y∗p+q+2k−1)(−y∗p+q+2k)

)
.

Since
∏p
i=1 y

∗
i > 0 and the other two products are positive, we have

t ≤

(
p∏
i=1

y∗i

)
×

(
q∏
j=1

y∗p+j

)
×

(
r∏
k=1

(−y∗p+q+2k−1)(−y∗p+q+2k)

)

≤

(
p∏
i=1

y∗i

)
×

(
q∏
j=1

gj(x
∗)

)
×

(
r∏
k=1

(−h2k−1(x∗))(−h2k(x∗))

)

=

(
p∏
i=1

aTi x
∗ + bi

)
×

(
q∏
j=1

gj(x
∗)

)
×

(
2r∏
k=1

hk(x∗)

)
.

Therefore, x∗ satisfies constraint (9).

All constraints in the augmented system (10) except the first, t ≤
∏p+q+2r
i=1 yi, define a convex feasible region.

We reformulate this first constraint using second-order cones. If it can be shown yi ≥ 0, i = 1, . . . , p, then we
can apply a reformulation technique similar to that used by Alizadeh and Goldfarb [2003] for maximizing the
geometric mean of nonnegative affine functions to compute a second-order cone representation. We first describe
this method and then extend it to the case when the variables yi, i = 1, . . . p, are unrestricted in sign.

9

Suppose p + q + 2r is even. If not, then introduce another variable yp+q+2r+1, and modify the augmented
system (10) to

t ≤
p+q+2r+1∏

i=1

yi,

yi = aTi x+ bi, i = 1, 2, . . . , p,

0 ≤ yp+j ≤ gj(x), j = 1, . . . , q, (11)

0 ≤ −yp+q+k ≤ −hk(x), k = 1, . . . , 2r,

yp+q+2r+1 = 1.

Under the assumption yi ≥ 0, i = 1, . . . , p, we can transform system (11) by adding p+q+2r
2

new variables and
constraints to obtain the system

p+q+2r
2∏
i=1

wi ≥
√
t,

yi = aTi x+ bi,

0 ≤ yp+j ≤ gj(x), j = 1, . . . , q

0 ≤ −yp+q+k ≤ −hk(x), k = 1, . . . , 2r (12)

y2i−1y2i ≥ w2
i , i = 1, . . . ,

p+ q + 2r

2
,

wi ≥ 0, i = 1, . . . ,
p+ q + 2r

2
.

The new constraints can then be rewritten as the second-order cones y2i−1 + y2i ≥
√

(y2i−1 − y2i)2 + (2wi)2, i =
1, . . . , p+q+2r

2
. After rewriting them, we obtain a system of inequalities similar to system (11), but with p+q+2r

2

variables in the product. We repeat this process log(p + q + 2r) times, adding O(p + q + 2r) new variables and
second-order cone constraints in all to obtain a convex reformulation.

In general, the nonnegativity assumption yi ≥ 0, i = 1, . . . , p, may not hold, and the above transformation may
not be applicable to the original constraint (9). We now describe a branching procedure that can be applied to
overcome this difficulty. Recall from Theorem 3.1 that for any feasible point of the augmented system (10), we have
yi 6= 0, i = 1, . . . , p, ypj > 0, j = 1, . . . , q, and yp+q+k > 0, k = 1, . . . , 2r. Therefore, we create 2p branches, each of
which has either yi < 0 or yi > 0 for each i = 1, . . . , p. The first branch has bounds yi < 0, i = 1, . . . , p, the second
branch has bounds y1 < 0, yi > 0, i = 2, . . . , p, and so on. The (2p)th branch has the bounds yi > 0, i = 1, . . . , p.
In all subproblems, yi > 0, i = p + 1, . . . , p + q + 2r, because their signs are fixed. We now consider any branch,
and let V− = {i | yi < 0, i = 1, . . . , p} and V+ = {i | yi > 0, i = 1, . . . , p + q + 2r}. If |V−| is odd, then we prune
the branch because it contains no feasible points. Thus, we prune half the branches: those with an odd number

of negative y variables. Now consider any branch where |V−| is even. We make
|V−|

2
disjoint pairs from this set

with an arbitrary ordering. For each pair (i, j), we introduce a new variable wij ≥ 0 and constraint yiyj ≥ w2
ij .

We make similar pairs for V+, adding a new variable wij ≥ 0 and constraint yiyj ≥ w2
ij for each. We then add a

constraint
∏
i,j wij ≥

√
t. The problem is now in the same form as system (12). The strict inequalities wij > 0

and yi < 0 or yi > 0 are not necessary because the constraint
∏
i,j wij ≥

√
t automatically enforces them.

We illustrate the procedure using the following example:

minx2
1

s.t. x3
1x2 − x1x

3
2 − x2

1x2 + x1x
2
2 ≥ 50.

After observing that x3
1x2 − x1x

3
2 − x2

1x2 + x1x
2
2 = x1x2(x1 + x2 − 1)(x1 − x2), we reformulate the problem as

min x2
1

s.t. y1y2y3y4 ≥ 50,

y1 = x1,

y2 = x2,

y3 = x1 + x2 − 1,

y4 = x1 − x2.

We create 24 = 16 branches as shown in Figure 1. In half the nodes, the number of yi variables that are constrained
to be negative is odd. These nodes (2, 3, 5, 8, 9, 12, 14, 15) can be pruned because the product y1y2y3y4 is negative

10

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
y1

y2

y3

y4

+ + + + + + + + - - - - - - - -

+ + + + - - - - + + + + - - - -

+ + - - + + - - + + - - + + - -

+ - + - + - + - + - + - + - + -

Figure 1: Search tree for the example described in Section 3. The ± sign below each node depicts the bound
constraints on yi. Nodes 2,3,5,8,9,12,14,15 are pruned immediately because

∏
i yi is nonpositive there.

there. For each of the remaining eight nodes, we reformulate the subproblem using second-order cone constraints.
Consider, for example, node 6. An equivalent reformulation there is

min x2
1

s.t. w1w2 ≥
√

50,

y1 = x1,

y2 = x2,

y3 = x1 + x2 − 1,

y4 = x1 − x2,

y1 + y3 ≥
√

(y1 − y3)2 + (2w1)2 (⇐⇒ y1y3 ≥ w2
1),

−(y2 + y4) ≥
√

(y2 − y4)2 + (2w2)2 (⇐⇒ y2y4 ≥ w2
2),

w1, w2 ≥ 0,

y1, y3 ≥ 0,

y2, y4 ≤ 0.

The first constraint now has a product of two variables and is reformulated as w1 + w2 ≥
√

(w1 − w2)2 + 4
√

50.
The resulting optimization problem is now convex.

To apply this method to a general constraint, we need to factor the polynomials and nonlinear expressions.
General polynomials can be factored over finite rings, like the ring of integers or rational numbers, by using
algorithms of Wang [1976] or Lenstra [1984]. Such algorithms have been implemented in open-source software
such as Singular [Decker et al., 2010] and Maxima [Maxima, 2009]. However, these software packages may be
unable to find linear factors of a polynomial either because it has irrational roots (e.g., x2

1 − 2) or it does not
have real roots (e.g., x4

1x2 + x5
2 + 2x2). Our method also does not work in such cases, and we must resort to

more general-purpose global optimization methods. Our technique also does not work when the constant t is
nonpositive.

3.2 Zero Constant

We now consider the case when the constant t of constraint (9) is zero. In this case Theorem 3.1 is not applicable.
In particular, if t = 0, we can have a feasible point (x∗, y∗) for the augmented system (10) with

∏p
i=1 y

∗
i < 0,∏q

j=1 y
∗
j = 0, and

∏q
j=1 gj(x

∗)y∗j = 0, which is not feasible for the original constraints (10). To address this
problem, we would need to enforce yp+j = gj(x), j = 1, . . . , q and yp+q+k = hk(x), k = 1, . . . , 2r, leading to a
nonconvex formulation unless gj(x) and hk(x) are linear functions.

Therefore, to obtain convex regions after branching, we consider the constraint

−

(
p∏
i=1

aTi x+ bi

)(
q∏
j=1

gj(x)

)(
2r∏
k=1

hk(x)

)
≤ 0, (13)

where ai ∈ Rn and bi ∈ R for i = 1, . . . , p with the following assumptions:

11

(B1) gj : Rn → R is a strictly positive function for j = 1, . . . , q, and

(B2) hk : Rn → R is a strictly negative function for k = 1, . . . , 2r.

In this case, we do not need any assumptions about the convexity of the functions gj and hk; the constraint is
equivalent to the system

−
p∏
i=1

yi ≤ 0,

yi = aTi x+ bi, i = 1, . . . , p.

We do not need any second-order cone reformulations in this case because the feasible region associated with the
first constraint is a union of orthants, each of which can be expressed by using simple bounds on the y variables.
We first handle the case when one or more y variables are zero, creating p branches in which one of the yi
variables is constrained to zero and the remaining variables are unrestricted in sign. The jth branch has the linear
formulation

yi = aTi x+ bi, i = 1, . . . , p,

yj = 0.

As in Section 3.1, we then create 2p additional branches: yi ≤ 0 for all i in the first branch, y1 ≤ 0, yi ≥ 0, i =
1, . . . , p in the next, and so on. The lth branch has only the following linear constraints,

yi = aTi x+ bi, i = 1, . . . , p,

yi ≤ 0, i ∈ V l−,

yi ≥ 0, i ∈ V l+,

where V l−, V
l
+ are the index sets of variables that are constrained to be nonpositive or nonnegative in branch l,

respectively. We prune those branches in which |V l−| is odd because at least one of the variables must be zero to
obtain feasibility for the original problem, and these cases are covered by the first set of branches. The branching
used is sufficient to solve these instances even though the branches do not have mutually disjoint feasible regions.

To illustrate our procedure, we consider a modification of the example in the previous section:

minx2
1

s.t. x3
1x2 − x1x

3
2 − x2

1x2 + x1x
2
2 ≥ 0.

As before, we reformulate the problem as

min x2
1

s.t. y1y2y3y4 ≥ 0,

y1 = x1,

y2 = x2,

y3 = x1 + x2 − 1,

y4 = x1 − x2.

We again create 24 = 16 branches as shown in Figure 1. The formulation in Node 6, for example, is

min x2
1

y1 = x1,

y2 = x2,

y3 = x1 + x2 − 1,

y4 = x1 − x2,

y1, y3 ≥ 0,

y2, y4 ≤ 0.

In addition, we have four more branches, where the ith new branch (i = 1, . . . , 4) has the formulation

min x2
1

y1 = x1,

y2 = x2,

y3 = x1 + x2 − 1,

y4 = x1 − x2,

yi = 0.

12

4 Computational Experiments

To test the usefulness of exploiting second-order cone structure for global optimization, we created several small
instances of three types:

1. Instances that have only quadratic and linear functions in the constraints. The quadratic constraints meet
the three assumptions described in Section 2. Their names follow the convention “qXdY”, where “X” denotes
the number of quadratic constraints, and “Y” denotes the total number of variables.

2. Instances that have constraints with quadratic functions plus exponential terms like those in Example 1 or
univariate variables with powers at least two like those in Example 2 (Section 2). Instance of the first type
are named “pXdYe”, with “X” being the number of constraints and “Y” being the total number of variables.
The second type are named “pXdY”. All the “pXdY” instances have variables with degree four in some
constraints.

3. Instances that have constraints with factorable polynomials and t > 0 as described in Section 3.1. These are
named “fXdY”, with “X” being the number of constraints, and “Y” being the total number of variables. We
add a suffix “b” to distinguish two instances having the same dimensions, but different factors. We restrict
to the special case when we do not have any nonlinear factors, i.e., q = r = 0, because we do not know of
any general methods for factoring them.

These instances are available online at the NEOS wiki1 in AMPL (.mod) and GAMS (.gms) formats.
We compared the performance of our techniques against two well-known global optimization software packages:

BARON, version 9.0.5 [Sahinidis, 1996], and Couenne, version 0.3.2 [Belotti, 2009]. BARON used CPLEX [IBM,
2009] as the linear programming solver and MINOS [Murtagh and Saunders, 1998] as the nonlinear programming
solver. Couenne was compiled with CLP [Forrest, 2010] as the linear programming solver and IPOPT [Wächter
and Biegler, 2006] as the nonlinear programming solver. All experiments were performed on a computer with
a 2.66 GHz Intel Xeon CPU having 4 MB cache and Ubuntu 8.04.4 operating system. We used two stopping
criteria: gap and time. We stop solving when the gap percentage falls to 0.01%, that is, when

∣∣ub−lb
ub

∣∣ ≤ 0.0001,
where lb is the lower bound and ub is the upper bound. We also impose a time limit of one hour.

We implemented our routines so that they can be easily incorporated into other global optimization solvers.
We first read the instance provided in the AMPL format and traverse the computational graph [Gay, 2005] of its
representation to recognize the structure. If a constraint has only a quadratic and linear functions, then we use
LAPACK [Anderson et al., 1999] to compute the eigenvalues and eigenvectors of the Hessian of the quadratic and
check for the three conditions (C1)–(C3) described in Section 2. Similarly, if we recognize a general polynomial in
a constraint, we try to factor it using Singular. If the polynomial can be factored into linear factors, we proceed
with the techniques described in Section 3. For the above two classes of problems, our implementation works
automatically, without any manual intervention.

When in addition to the quadratic terms, we have terms that are either exponential (“pXdYe”) or higher-
order univariate terms (“pXdY”), we first find the eigenvalues and eigenvectors associated with the quadratic
as before. Then, we reformulate the instance as a convex nonlinear program with binary variables, similar to

system (7), but with additional convex constraints: α
1
2
rTi x − xn+i ≤ 0 for exponential functions (Example 1)

and
∣∣rTi x∣∣ pi2 ≤ xn+i for higher-order polynomials (Example 2). We solve the reformulations using a simple

branch-and-bound procedure. We need branch only on the binary variables because the remaining problem is
convex. The first- and second-order derivatives are available directly from AMPL. Since routines for traversing
the computational graphs are already available in global optimization solvers such as BARON and Couenne, it
would be easy for the developers to incorporate our procedure in those solvers.

We use IPOPT for solving the convex nonlinear programs obtained after branching. Since IPOPT requires
first- and second-order derivatives, we implemented functions to calculate these values at a given point. The only
function that we need to implement is that describing a second-order cone,

f(y0, y) =

√√√√(n∑
i=1

y2
i +K

)
− y0.

This function is twice continuously differentiable everywhere except when K = 0 and y = 0. At this exceptional
point, the gradient in the limit K → 0 is 0. The elements of Hessian at this point become unbounded in the limit.
Hence, if K = 0 and if the nonlinear solver asks for evaluating derivatives at 0, we do not proceed further and
return failure. For the instances of our test set, such an event never occurs. In any case, if gradients are available,
a robust nonlinear optimization solver will converge if we supply a Hessian approximation in the case when y = 0
and K = 0.

We list the results with BARON, Couenne, and our methods in Table 1. We observe that while both BARON
and Couenne fail to solve several instances in the time limit, we solve all problems in a few seconds. The
improvement grows as the number of nonlinear constraints in the instance increases. For some instances, the gap

1http://wiki.mcs.anl.gov/NEOS/index.php/LIGOLIB

13

http://wiki.mcs.anl.gov/NEOS/index.php/LIGOLIB

Table 1: Size of the instances and performance of BARON and Couenne as compared with our implementation
(q-soc). The number following the “>” under “# Nodes” denotes the number of nodes created when the time limit
of one hour was reached. Gap% is defined as

∣∣ub−lb
ub

∣∣× 100.

Nodes Total time or gap% at 1h Gap% at 60s
Inst. Vars Cons BARON Couenne q-soc BARON Couenne q-soc BARON Couenne
q1d2 2 2 39 14 2 0.04s 0.2s 0.02s 0.0 0.0
q1d3 3 2 297 701 2 0.4s 0.7s 0.03s 0.0 0.0
q2d6 6 4 697559 >5081900 4 841.2s 0.1% 0.2s 7.2 11.8
q3d6 6 6 339 1801 8 0.6s 1.3s 0.7s 0.0 0.0
q3d9 9 6 >1250000 >2921300 8 17.6% 21.1% 0.3s 607.1 1770.6
q4d8 8 8 33845 26901 16 46.2s 15.4s 2.4s 0.0 0.0
q5d10 10 10 1280974 2432401 32 1718.3s 1561.5s 1.8s 0.9 3.5
q5d10b 10 10 >1033800 >3182100 32 123.3% 56.4% 1.8s 930.3 662.1
q5d15 15 10 256889 >1398400 32 1113.8s 23.1% 18.4s 213.3 577.8
q6d12 12 12 >1410000 >4000900 64 0.5% 3.5% 9.0s 8.1 4.1
p4d12 12 12 1251 11501 31 8.6s 23.1s 0.8s 0.0 0.0
p5d10 10 10 >996000 >2299500 11 71.2% 27.6% 2.1s 595.7 769.3
p5d10e 10 10 >1031000 >294600 11 73.5% 290.8% 1.2s 454.4 760.9
p5d15 15 10 6269 93601 63 62.5s 213.9s 1.4s 0.1 52.4
p5d15e 15 10 283915 >213600 63 2751.0s 9.1% 1.3s 291.7 140.6
p6d18 18 12 212599 >979200 91 2445.7s 273.8% 2.7s 235.3 575.0
f1d3 3 2 1497 66801 4 2.4s 47.4s 0.2s 0.0 0.0
f2d4 4 4 2349 5901 64 5.3s 9.1s 1.9s 0.0 0.0
f2d6 6 4 447363 >1933300 16 1417.3s 1.2% 0.6s 5.5 19.1
f3d6 6 6 81167 801001 512 266.0s 1572.5s 20.1s 416.6 497.8
f3d6b 6 6 915 9001 512 1.5s 8.6s 22.4s 0.0 0.0
f3d9 9 6 >550000 >1208700 64 4.9% 19.8% 3.1s 29.4 33.3
f4d8 8 8 >687000 >1636700 4096 293.3% 392.8% 195.8s 902.3 826.3

was more than 100% because the best lower bound obtained by the solvers was negative while the best upper
bound was positive. We found that for these small instances, while both BARON and Couenne could find the
best possible upper bound quickly, it was difficult for them to increase the lower bound. The several orders of
magnitude improvement we observe in these instances provides evidence that such reformulation techniques can
be useful in solving such problems to global optimality.

5 Conclusions

In this paper we presented techniques for automatically reformulating quadratic constraints that satisfy certain
assumptions in such a way that we can obtain convex second-order cone formulations after branching. Our
preliminary experiments on small instances show that when such techniques are not used, a global optimization
solver can perform poorly even on small instances. Such techniques can be incorporated in current solvers, and
similar techniques can be developed for more classes of constraints. Effectively implementing these methods poses
several challenges, however. If other nonconvex constraints appear in the instance, for example, then solving
nonlinear programming relaxations may not be as fast as solving linear programming relaxations.

Such techniques can be extended to other nonlinear functions. We have focused on reformulating nonconvex
programs using second-order cones. We can also reformulate constraints by using generalized cones

‖Ãx+ b̃‖p ≤ |c̃Tx+ d̃|,

where p ≥ 1. The feasible region for the above constraint is a union of two pth order cones and could be used
to represent higher-order polynomials. In Example 2, for example, we assumed that the higher-order terms exist
only as a sum of univariate monomials. This idea can be extended to general polynomials if we can reformulate
a constraint of the form

S(x) ≤ 0,

where S(x) : Rn → R is a polynomial of degree p ∈ N, as

k∑
i=1

|yi + bi|p ≤ |y1 + b1|p .

14

Unfortunately, when p > 2, general methods for converting a polynomial S(x) into the above form are not known.
Progress has been made in this direction, however, for the case when p = 3. See, for example, the work of Kolda
and Bader [2007].

We analyze the quadratic and nonlinear functions only at the root node when checking if we can reformulate
the constraints. We could check for the required structures as the branch-and-bound tree is generated. Since the
nodes represent a restriction of the original problem, we may be able to reformulate the problem at one of those
nodes even if the problem violates the necessary conditions at the root node.

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Depart-
ment of Energy, under Contract DE-AC02-06CH11357. This work was also supported by the U.S. Department of
Energy through grant DE-FG02-05ER25694.

References

F. Al-Khayyal, C. Larsen, and T. Voorhis. A Relaxation Method for Nonconvex Quadratically Constrained
Quadratic Programs. Journal of Global Optimization, 6:215–230, 1995. doi: 10.1007/BF01099462.

F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming, 95(3):3–51, 2003.
doi: 10.1007/s10107-002-0339-5.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8 (paperback).

I. P. Androulakis, C. D. Maranas, and C. A. Floudas. αBB: A global optimization method for general constrained
nonconvex problems. Journal of Global Optimization, 7(4):337–363, 1995. doi: 10.1007/BF01099647.

K. J. Arrow, H. B. Chenery, B. S. Minhas, and R. M. Solow. Capital-labor substitution and economic efficiency.
The Review of Economics and Statistics, 43(3):225–250, 1961. doi: 10.2307/1927286.

P. Belotti. Couenne: A User’s Manual, 2009. Available online at https://projects.coin-or.org/Couenne/.

P. Belotti. Disjunctive Cuts for Non-Convex MINLP. In IMA Volume Series, 2010. Accepted.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

W. Decker, G. M. Greuel, G. Pfister, and H. Schönemann. Singular 3-1-1 — A computer algebra system for
polynomial computations. 2010. Available online at http://www.singular.uni-kl.de.

J. Forrest. COIN-OR Linear Programming solver, 2010. Available online at https://projects.coin-or.org/Clp.

D. M. Gay. Writing .nl files. Technical Report 2005-7907P, Sandia National Laboratories, Albuquerque, NM,
2005.

IBM. User’s manual for CPLEX V12.1, 2009. Available online at http://ibm.com/software/integration/

optimization/cplex/.

T. Kolda and B. Bader. Tensor decompositions and applications. Technical Report SAND2007-6702, Sandia
National Laboratories, Albuquerque, NM, Nov. 2007.

A. K. Lenstra. Factoring multivariate polynomials over algebraic number fields. In M. P. Chytil and V. Koubek,
editors, Mathematical Foundations of Computer Science, pages 389–396, 1984. doi: 10.1007/BFb0030321.

Maxima. A Computer Algebra System. Version 5.18.1, 2009. Available online at http://maxima.sourceforge.

net.

B. A. Murtagh and M. A. Saunders. MINOS 5.4 user’s guide. Report SOL 83-20R, Department of Operations
Research, Stanford University, 1998.

N. V. Sahinidis. BARON: A general purpose global optimization software. Journal of Global Optimization, 8:
201–205, 1996. doi: 10.1007/BF00138693.

A. Saxena, P. Bonami, and J. Lee. Convex relaxations of non-convex mixed integer quadratically constrained
programs: Projected formulations. Technical Report RC24695, IBM Research Division, 2008.

15

http://dx.doi.org/10.1007/BF01099462
http://dx.doi.org/10.1007/s10107-002-0339-5
http://dx.doi.org/10.1007/BF01099647
http://dx.doi.org/10.2307/1927286
https://projects.coin-or.org/Couenne/
http://www.singular.uni-kl.de
https://projects.coin-or.org/Clp
http://ibm.com/software/integration/optimizatio n/cplex/
http://ibm.com/software/integration/optimizatio n/cplex/
http://dx.doi.org/10.1007/BFb0030321
http://maxima.sourceforge.net
http://maxima.sourceforge.net
http://dx.doi.org/10.1007/BF00138693

M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer nonlinear programs: A theoretical
and computational study. Mathematical Programming, 99:563–591, 2004. doi: 10.1007/s10107-003-0467-6.

R. C. Thompson. The behavior of eigenvalues and singular values under perturbations of restricted rank. Linear
Algebra and Its Applications, 13:69–78, 1976. doi: 10.1007/BF01099647.

A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter line search algorithm
for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006. doi: 10.1007/s10107-
004-0559-y.

P. Wang. Factoring multivariate polynomials over algebraic number fields. Mathematics of Computation, 30(134):
324–336, 1976. doi: 10.1145/1088309.1088316.

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

The submitted manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”) under
Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

16

http://dx.doi.org/10.1007/s10107-003-0467-6
http://dx.doi.org/10.1007/BF01099647
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1145/1088309.1088316

	Introduction
	Nonlinear Constraints
	Construction
	Necessary Conditions
	Comments

	Factorable Constraints
	Positive Constant
	Zero Constant

	Computational Experiments
	Conclusions
	Acknowledgments
	References

